–estimates for the Linearized Monge–ampère Equation
نویسنده
چکیده
Let Ω ⊆ Rn be a strictly convex domain and let φ ∈ C2(Ω) be a convex function such that λ ≤ detD2φ ≤ Λ in Ω. The linearized Monge– Ampère equation is LΦu = trace(ΦD u) = f, where Φ = (detD2φ)(D2φ)−1 is the matrix of cofactors of D2φ. We prove that there exist p > 0 and C > 0 depending only on n, λ,Λ, and dist(Ω′,Ω) such that ‖Du‖Lp(Ω′) ≤ C(‖u‖L∞(Ω) + ‖f‖Ln(Ω)) for all solutions u ∈ C2(Ω) to the equation LΦu = f .
منابع مشابه
Interior Second Derivative Estimates for Solutions to the Linearized Monge–ampère Equation
Let Ω ⊂ Rn be a bounded convex domain and φ ∈ C(Ω) be a convex function such thatφ is sufficiently smooth on∂Ω and the Monge–Ampère measure det D2φ is bounded away from zero and infinity in Ω. The corresponding linearized Monge–Ampère equation is trace(ΦD2u) = f , where Φ := det D2φ (D2φ)−1 is the matrix of cofactors of D2φ. We prove a conjecture in [GT] about the relationship between Lp estima...
متن کاملInterior Gradient Estimates for Solutions to the Linearized Monge–ampère Equation
Let φ be a convex function on a strictly convex domain Ω ⊂ Rn, n ≥ 1. The corresponding linearized Monge–Ampère equation is trace(ΦD2u) = f , where Φ := det D2φ (D2φ)−1 is the matrix of cofactors of D2φ. We establish interior Hölder estimates for derivatives of solutions to the equation when the function f on the right hand side belongs to Lp(Ω) for some p > n. The function φ is assumed to be s...
متن کاملBoundary Regularity for Solutions to the Linearized Monge-ampère Equations
We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.
متن کاملBoundary Harnack Inequality for the Linearized Monge-ampère Equations and Applications
In this paper, we obtain boundary Harnack estimates and comparison theorem for nonnegative solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are boundary versions of Caffarelli and Gutiérrez’s interior Harnack inequality for the linearized Monge-Ampère equations. As an application, we obtain sharp upp...
متن کاملGlobal W2, p estimates for solutions to the linearized Monge–Ampère equations
In this paper, we establish global W 2,p estimates for solutions to the linearizedMonge–Ampère equations under natural assumptions on the domain, Monge– Ampère measures and boundary data. Our estimates are affine invariant analogues of the global W 2,p estimates of Winter for fully nonlinear, uniformly elliptic equations, and also linearized counterparts of Savin’s global W 2,p estimates for th...
متن کامل